RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex.

نویسندگان

  • Sebastian Maurer
  • Jürgen Fritz
  • Georgi Muskhelishvili
  • Andrew Travers
چکیده

Using high-resolution atomic force microscopy (AFM) we show that in a ternary complex of an activator protein, FIS, and RNA polymerase containing the sigma(70) specificity factor at the Escherichia coli tyrT promoter the polymerase and the activator form discrete, but connected, subcomplexes in close proximity. This is the first time that a ternary complex between an activator, a sigma(70) polymerase holoenzyme and promoter DNA has been visualised. Individually FIS and RNA polymerase wrap approximately 80 and 150 bp of promoter DNA, respectively. We suggest that the architecture of the ternary complex provides a general paradigm for the facilitation of direct, but weak, interactions between polymerase and an activator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly

In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes ar...

متن کامل

An activator binding module of yeast RNA polymerase II holoenzyme.

The Mediator complex of Saccharomyces cerevisiae is required for both general and regulated transcription of RNA polymerase II (PolII) and is composed of two stable subcomplexes (Srb4 and Rgr1 subcomplexes). To decipher the function of each Mediator subcomplex and to delineate the functional relationship between the subcomplexes, we characterized the compositions and biochemical activities of P...

متن کامل

Reorganisation of an RNA polymerase-promoter DNA complex for DNA melting.

Sigma factors, the key regulatory components of the bacterial RNA polymerase (RNAP), direct promoter DNA binding and DNA melting. The sigma(54)-RNAP forms promoter complexes in which DNA melting is only triggered by an activator and ATP hydrolysis-driven reorganisation of an initial sigma(54)-RNAP-promoter complex. We report that an initial bacterial RNAP-DNA complex can be reorganised by an ac...

متن کامل

Identification of a mammalian RNA polymerase I holoenzyme containing components of the DNA repair/replication system.

Traditional models for transcription initiation by RNA polymerase I include a stepwise assembly of basic transcription factors/regulatory proteins on the core promoter to form a preinitiation complex. In contrast, we have identified a preassembled RNA polymerase I (RPI) complex that contains all the factors necessary and sufficient to initiate transcription from the rDNA promoter in vitro. The ...

متن کامل

Conformational flexibility of RNA polymerase III during transcriptional elongation.

RNA polymerase (Pol) III is responsible for the transcription of genes encoding small RNAs, including tRNA, 5S rRNA and U6 RNA. Here, we report the electron cryomicroscopy structures of yeast Pol III at 9.9 Å resolution and its elongation complex at 16.5 Å resolution. Particle sub-classification reveals prominent EM densities for the two Pol III-specific subcomplexes, C31/C82/C34 and C37/C53, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 25 16  شماره 

صفحات  -

تاریخ انتشار 2006